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Near-infrared diffuse reflectance spectrometry is a rapid analytical

method that typically uses the reflectance of a sample at several
wavelengths to determine the sample’s compositionl. The technique is
heuristic in its approach and makes extensive use of computers2,3.
Through a computational modeling process (generally employing multiple
linear regression), near-infrared reflectance analysis is able to correct
automatically for background and sample-matrix interferences, making
ordinarily difficult analyses seem routine. The modeling process employs

a "training set" of samples to "teach" the computer algorithm to

recognige relationships between minute spectral features and the sample’s
composition4. 0f course, the training set must have been previously
analyzed by some other reliable (reference) chemical procedure. Although
assembling a training set and developing a new calibration can require
considerable time, the subsequent speed of quantitative analysis has
provided plenty of impetus for the growth of near-IR reflectance methods.

Quantitative analysis has been the principal application of near-IR
reflectance analysis to date5. Recently, however, some attention has
been turned to the use of near-IR reflectance as a qualitative technique
as well®-10, Near-IR reflectance analysis has been shown to be capable
of differentiating among a variety of pure compounds and mixtures of
constant composition. It is this ability that is exploited here to solve
the false-sample detection problem.

A false sample is simply any sample that falls outside of the domain
of the samples used to train the near-IR reflectance analysis algorithm.
For example, a manufacturer wmay be interested in using near-IR
reflectance analysis to monitor the protein concentration of a liquid

-3-
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stream. The normal range of concentrations might be 3 to 6%, and training

samples would be selected to completely cover this range. If a process

change or equipment failure should occur one day and the protein ‘

concentration jump to 10%, a false-sample situation would exist.

Analyzing this false sample

requires extrapolating beyond the range of

the training set used to generate the prediction equation. An operator

o 1,}‘. -

should be signaled either to stop the stream and correct the equipment

-

failure, or to recalibrate the near-IR reflectance analysis instrument to 4

R

accept the new range of concentration values.
This type of false-sample condition is easily detected, however, by a

simple test to determine if the predicted value falls outside of the

[E_E. (R e

range of concentrations used in generating the prediction equation.

Von - B

Another type of false-sample condition is more insidious and difficult to

TN T X
-

% detect. A completely new component, a component not present in the

training set and therefore thoroughly unexpected, can appear in the

samples and cause erroneous composition values to be generated. This
component could be a chemical entity, as might be introduced by opening a

valve at the wrong time or by contamination of the raw materials, or f{rom

a noise source, such as instrument drift over time or a change in

particle-sige distribution. In short, the aim of false-sample detection

is to go beyond simple qualitative analysis to answer the question, "Does

g - - e

my prediction equation apply to the current sample?"

-~
-

N The process of detecting false samples involves the analysis of
multivariate data distributions, a topic which is currently being

investigated in a number of ways!l. We have selected quantile analysisl3

I ATy Y

as a basis for nonparamelric tests of distributional assumptions because

it provides easy access to both numerical statistics and readily

-4-
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4
interpreted graphs. Quantile analysis simply transforms the cumulative N

frequency distribution of a data set into a convenient linear form. From o
this form the location, scale, and skew of the data can be estimated.

Quantile analysis provides additional advantages!3 that are particularly

N

. LA

useful with multivariate data. These advantages include the following: X

3

h 1. The complexity of the graph is independent of the number of ﬁ
b ¥
: observations. X
v,

2. The gquantiles are invariant under monotone transformation (such as a I

0

1 transformation of a distribution location or scale). by,
1 .L
; 3. Condensation, interpolation, and smoothing of data are easily g}
L]

L
accomplished. !
4. The grouping difficulties that occur in histograms are not present. &

3}

. 5. Peculiarities, such as overlap of two distributions or multimodality, )

1

are effectively indicated.

- o
Art e )

-~

Figure 1 shows reflectance data obtained from a number of spectra,

3
e

using two wavelengths to describe two hypothetical compounds, A and B.

(Each wavelength in a spectrum can be represented as a spatial dimension,

L

2

o A 8
-

giving a single point in an n-dimensional space for a spectrum recorded
at n wavelengths. The point is translated from the origin by amounts
that correspond to the magnitude of the reflectance observed at each
) wavelength. By representing spectra in this manner, a group of similar

samples with similar spectra appears as a cluster of points at a certain
\ location in space.) A univariate distribution can be formed from the 3

points that lie within a specified radius of the line connecting the by

centers of clusters A and B. ;
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Quantile plots are often utilized in the analysis of univariate $ﬁ
distributions to compare a theoretical distribution to an empirical one. .jg
A particular quantile (p) selected for plotting represents the value of ’ﬁ
the integral of a probability density function (from negative infinity §§
until the quantile p is reached). Comparing two distributions by their ;g
quantiles requires that both distributions be transformed into cumulative é?
distributions. Essentially, this is accomplished by integrating the two r“&

probability density functions to form a theoretical cumulative
distribution function (TCDF) and an empirical cumulative distribution ,
function (ECDF). Typically, the upper 1limits of integration for p are Q%
what is plotted for the TCDF and the ECDF. Starting with p and solving W

for a limit of integration constitutes the inversion of the distribution

function. By convention, quantile plots put the TCDF on the x-axis and
the ECDF on the y-axis., The scales used on each axis are derived from
the values of the corresponding inverse cumulative distribution functions
as p is allowed to vary between zero and onel3,

Figure 2 shows a quantile plot of the points along the center line
(inside the box) from Figure 1. The inset in Figure 2 is a histogram
(empirical distribution function) of the same points. These points, used
to form the ECDF and set along the ordinate, are plotted versus the
quantiles of the normal distribution (the TCDF) on the abscissa. The

slopes and intercepts of the two lines in Figure 2 supply parameters to

equations for the probability density in the direction through the two o,
cluster centers. In a similar manner, quantiles can be used to set ji
confidence limits around clusters by determining the probability density e

. g . . . KX
in a specified direction. !
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Multivariate data analysis using distribution quantiles provides a %
way both qualitatively to identify samples and to determine when a new
near-IR reflectance calibration equation i§ required. The algorithm is
conceptually uncomplicated and takes a step toward simplifying the

statistics of near-IR reflectance analysis in the manner in which near-IR

reflectance methods themselves have simplified instrumentation. A k.
description of this algorithm is the subject of the following section. Si
.
o
s
W
THEORY E
LS
:
Data Clusters in Near-IR Reflectance Analysis. The sample- 2i
Xl
identification problem in near-IR reflectance analysis can be a complex A
)
i)
one indeed, and time can be spent profitably in the examination of a ,j
o
fairly simple construction of this problem. Figure 3 depicts the spectra &
of three hypothetical pure compounds, A, B, and C. These spectra were 1
o
recorded at two wavelengths and projected into a two-dimensional space as jﬁ
W
1)
described in the previous section. The measurements are assumed to be ﬁ
it
free of error from particle-size differences, concentration variations, ]'
cj"
drift, etc., and therefore result in three points in space rather than piv
bt
three clusters. When 1000 sample mixtures are prepared from A, B, and C b3t
A
by randomly weighting the proportion of each compound in each mixture, a j'
0
3
training set (whose spectra are shown in Figure 4) is formed. (Figure 4 $
assumes that Beer’s Law holds.) This training-set cluster is basically %T
elliptical; should one desire to determine the distance of a new sample 3
from this cluster, the Mahalanobis metricl4 provides an obvious means. ;
¥
Figure 5 shows the resulting training set when compounds A and C are A
b

moved approximately three times farther away from B than they were in

.1
-7- X
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Figure 4. The training set remains elliptical, but its orientation has ]

been altered (the slope of the line through the major axis of the ellipse N

has increased, as shown by the scales on the x and y axes). This E}
>
behavior demonstrates that the shape of the training-set cluster is :%
3
)

basically independent of the positions (spectra) of the raw materials (A, X

B, and C), at least in the error-free case represented by the pure

components depicted in Figure 3. 2
Figure 8 corresponds to Figure 3, except that the pure-component zé
spectra are no longer precisely kmown. A, B, and C are now 1000-point "
clusters, formed by adding bivariate-normal noise to the original three E?
points. Each of these clusters is also elliptical. The variance of the ﬁi
major (horigontal) axis is arbitrarily set four times greater than that ;;
of the minor (vertical) axis. When a randomly weighted training set of ¥§
1000 hypothetical mixtures is created from the clusters corresponding to '§g
the points used in Figure 5, a revealing pattern (Figure 7) emerges. The ‘f
smooth elliptical shape of the cluster has broken down and the 1§i
distribution of points about the center of the cluster is no longer %g
perfectly symmetric. A cross-section of points through the center of the _}5
cluster shows a definite right(or positive)-skew, indicating the presence ;gg
" of a leverage effect by points with higher values. (A frequency- véi
distribution polygon of this cross-section appears in Figure 8.) Real lgi
near-IR reflectance data showing this same effect appears in Figure 18 ,%;
and will be discussed later. ig
Figure 9 demonstrates the effect of such a skew on the determination 'ii

of a confidence limit. Because of the balancing property of the mean ?2
(#), a small number of points located some distance away from the others :ﬁs

exerts a considerable leverage on the value of the mean. When these

\
-8- re,
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distant points are lower values than the rest as in Figure 9, the
distribution is said to be left(or negatively)-skewed, and the mean
shifts downward. In Figure 9, these outlying points are real and should
not be discarded (the solid line represents the underlying distribution
of the total population from which the samples were drawn). For this
situation, the usual symmetric statement of confidence limitsl5, e.g.,
(confidence limits for anything) = s +/- tg, gSanything

does not provide an adequate description. For example, suppose zp0 = a

(see Figure 9). Clearly, the probability of a point appearing at (p+a)

is different than the probability of a point appearing at (u-a).

Discriminant Analysis in Near-IR Reflectance. Asymmetry of near-IR
spectral clusters about their means has appeared in literature reports®.
However, the methods that have been applied to discriminant analysis in
near-IR reflectance have not dealt with this phenomenon.

In general,

discriminant analysis involves several assumptionsl®, including:

1. No discriminating variable is a linear combination of other

discriminating variables.

2. The covariance matrices for all (spectral) groups are approximately

equal (unless special formulas are used).

3. Each group has been drawn from a population that is normally

distributed on the discriminating variables.

The violation of these assumptions reduces the efficiency of discriminant

analysis, and increases the probability of misclassifying samples.

[ 0 v .
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The Quantile BEAST. Nonparametric methods (distribution-free methods ';
whose properties hold under very few assumptions about the population *;
from which the data are obtained) can be profitably applied to this sort :?
of discriminant analysis. Nonparametric techniques provide a ;g
conceptually simpler statistical alternative to many common procedures, 1%
and for the price of some additional arithmetic, can keep violations of ﬁ?
assumptions from being reflected in faulty inferences. The Quantile ':
BEAST (Bootstrap Error-Adjusted Single-sample Technique) is such a _':t:.
distribution-free method of flagging samples outside of the domain of the :$:
training set. It is based on the bootstrap procedure of Efronl?, a ;}g
nonparametric method of assigning a standard error to a point estimate. ﬁﬁv
The Quantile BEAST constructs a multidimensional cluster in space using 4
the reflectances of each training-set sample at a number of wavelengths. iﬁ
New samples are then projected into this space and a nonparametric é%
confidence test is performed to determine whether the new sample is part !
of the training-set cluster. In this manner, qualitative identification gg
of pure samples is made possible and false-sample mixtures can be ﬁﬁ
detected. -
Whenever it is possible that the distribution underlying a set of Eg
samples is skewed, an asymmetric nonparametric method of setting jf
confidence limits should be employedi®. This sort of method does not ?
assume that the best point estimate of the mean lies at the center of the §§
interval between the confidence limits. The BEAST acquires this &g
asymmetric estimation capability from the bootstrap, which can be %;
summarized as follows. Given an unknown distribution function F, and ;g
some parameter of interest (such as the sample mean or median) that is a %%
function of a number of independent identically distributed cbservations &;
-10- E:E
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from F, the object of the bootstrap is to determine the standard error in
the parameter of interest from the observations in a training set (a
representative sampling of the unknown distribution). The real standard
error of the parameter is a function of the unknown distribution, the
sizse of the sample set, and the form of the parameter. However, knowing
the number of observations and the form of the parameter, the standard
error can be expressed as a function of only the unknown distribution F
(in essence, this is the definition of the bootstrap estimate of the
standard error). In other words, although the actual distribution F is
unknown, we can estimate it using the empirical probability distribution
represented by the training set. There are three steps to this
estimation process:
1. A training set composed of equally weighted observations from the
unknown distribution is created. This empirical probability

distribution (see Figure 10b) must be constructed to adequately

describe the variation in the unknown distribution F (Figure 10a).

The 19 observations that appear in Figure 10b can be thought of as 19
*blocks" removed from an infinitely large pile of similar observation
"blocks" (Figure 10a). These training-set blocks are stacked in

Figure 10b in a manner that describes their original positions in the

iy g W &

infinitely large pile, thus forming a histogram. Once assembled,

this training set remains unchanged for the remainder of the

. T

estimation procedure.

Bootstrap observations are blocks that are randomly and independently
drawn from the training set, with replacement from the training set
(so that the training set is never depleted or changed), to form a
bootstrap set with the same total number of blocks as the training

-11-
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set (19 blocks for each set in Figures lla-c). Note that the number
of observations appearing at a given location in a bootstrap set will
vary between bootstrap sets taken from the same training set.

The sampling distribution of the parameter of interest (e.g., the
center of a group of spectral points in hyperspace) for the unknown
distribution F is approximated by the distribution of that parameter
calculated using the bootstrap observations (hereafter this
distribution is termed simply the "bootstrap distribution").

The most difficult part of the bootstrap procedure is the actual

calculation of the bootstrap distribution. There are three ways to

arrive at this distribution.

1.

3.

Direct theoretical calculation of the distribution can be performed.
This works for a few special examples, but is usually impossible in
experimental situations.

Taylor-series expansion methods can be used to find an estimate of
the mean and variance of the bootstrap distribution of the parameter
of interest. This turns out to be a form of the jackknife, another
nonparametric methodl?.

The Monte-Carlo approximation to the bootstrap distribution can be
calculated. With this method, a large number (B) of bootstrap sample
sets is generated by randomly drawing observations from the training
set (again, with replacement from the training set) to form bootstrap
sets of the same size as the training set. The empirical
distribution of the corresponding values of the parameter of interest
calculated using the bootstrap sets is taken as an approximation to
the bootstrap distribution. (This process is shown in Figures lla-c,
where the three figures represent B=3 bootstrap replications of the

-12-
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training set, and in Figure 12, which shows a Monte Carlo ':'
approximation to the bootstrap distribution.) The Monte Carlo method :i,;

is by far the most commonly used experimental technique for obtaining r
the bootstrap distribution. ';E
The bootstrap approach illustrates a way in which data analysis in :
near-IR reflectance spectroscopy can be simplified, much like near-IR ;'
reflectance methods themselves have simplified spectroscopic ,:E
measurements. Specifically, a complex problem can be solved by a simple 5:::
procedure iterated a large number of times. In effect, each sample l‘
spectrum in the training set is simply copied thousands of times. The :.é
resulting spectra are then thoroughly shuffled and new training sets are :.:.:
selected from the copies at random. An expectation value (the center of %
the spectral-point cluster in hyperspace) is calculated from each new ,l.s
training set. The distribution of bootstrap-set centers can be treated ::f
as though it were constructed from actual collected training sets, and &
its quantiles can be used to produce an estimate of the value and ':::t
precision of the center-parameter for the original population. The E:’
quantiles are therefore useful in defining the boundaries of a training 2
set or pure compound in the hyperspace of spectral points. :5:
Bootstrap distribution quantiles are readily converted into ;ES
confidence intervals. Using the method described above, in which the i
distribution of bootstrap-set centers is treated as though it were iz
constructed from actual observations, selecting any two bootstrap- :.:}
distribution percentiles gives the corresponding confidence limits for %
the center-parameter (e.g., selecting the 16th and 84th percentiles of :i:
the bootstrap distribution produces the central 68% confidence limits). :;{.
At times, however, this method can fail to capture the asymmetry of a ‘ﬁ
-13- "

. A
= y \ \ ; Y 60 4 4t (A OO
S DR O AN T ONO O OSDET NN IRHENDEIIN OO NN M RN TN SA A N N N



R . P . (R TR 0,050 gl g 0ol ol dah " 0 alatal, “ab, g,
. . P o . < 3 .Y AN gl Mol 2 . & Vol ‘gl N J
Ry E NS VA 0 X A K (X7 ¥} A VRS b

distribution. (The failure becomes obvious in near-IR spectral data when 1
the median of the training set is noticeably different from the mean of 'a
the bootstrap distribution.) Similar observations led Efron to propose a ;?
bias correction method that was largely incorporated into the BEAST ‘ﬁ

(forming the Error-Adjustment)18. In essence, applying the correction is
a recognition that the mean value of a distribution drifts in the

direction of the skew (measured with respect to the median of the

distribution). Large differences between the median and mean suggest a f&
'

skew that casts doubt upon the validity of a simple symmetric confidence i:
interval. 'When no difference between the mean and the median exists, the E%
value of the correction is zero. Otherwise, the error is compensated and é%
new confidence limits are obtained with an improved representation of any .é?
skew present. ﬁg
The entire BEAST algorithm can now be outlined. In the technique, Zg
each monitored wavelength is considered a dimension in hyperspace and the Ff
distribution of reflectances on each wavelength axis gives projections of g?
the clusters of points. Each point represents an entire spectrum, E§
translated from the origin by amounts that correspond to the magnitude of ?ii
the reflectance observed at each wavelength. Valid samples are defined %é
as those that fall inside the cluster of training-set points, while false gé
samples are those that fall outside of the cluster. Confidence limits, 'g
set along any linear combination of wavelengths (dimensions), define the 3?
surfa?e of the cluster at a specified confidence level. These confidence %ﬁ
limits are obtained by using the bootstrap (hence the B in the BEAST) to ‘%i
arrive at an estimate of the real-sample population distribution based 'gg
upon the training-set distribution. The center of the real-sample IE?
2\

distribution is estimated by the BEAST using the center of the bootstrap-
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set centers (the bootstrap distribution). When a new sample (the Single-
sample in the BEAST) is tested, a vector is formed in hyperspace between
the new spectral point and the estimated center point of the real-sample
distribution. A hypercylinder formed about this line will contain a
number of estimated real-sample training-set centers. ¥hen the
coordinates of these points are transformed into distances from the
estimated center of the real-sample distribution, a wunivariate
distribution is constructed. It is this univariate distribution that is
used in the confidence test. The reliance on nonparametric techniques
produces a false-sample test that operates without assumptions about the
shape, size, symmetry, or orientation of the spectral-point cluster in

hyperspace.

EXPERIMENTAL

The algorithms previously described were implemented in programs
using VAX-11 BASIC (version 2.4, Digital Equipment Corporation) and
Speakeasy 1V Delta (VMS version, Speakeasy Computing Corporation,
Chicago). These programs were run on VAX-11/780 and VAX-11/785
computers. Spectral data at 18 discrete wavelengths were collected using
a Technicon InfraAlygzer 400 filter spectrophotometer. This
spectrophotometer was directly connected to a VAX-11/780 computer using
custom interface and graphics programs.

Three types of demonstrations were conducted using the BEAST,
beginning with the common compound-identification problem and proceeding
to the more difficult problem of detecting contaminated mixtures. The

three tests were:
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e 1. The BEAST was used qualitatively to distinguish among a number of
N

~k‘ pure benzoic-acid derivatives. [Each of the four compound names in
)

9

Table I represents three spectra of that compound obtained by

cé rotating the closed-sample cup in the drawer and scanning through the
3 18 filters.
E 2. The BEAST was trained with a set of 40 mixtures of the benzoic acid

o derivatives used in test 1. The samples were examined at three
k)

R selected wavelengths, and the BEAST was then presented with pure
3

benzoic acid derivatives and other compounds to determine if it could

W detect these false samples. A total of 60 samples were prepared for

' the training set in this test; of these, 20 were retained for use in
test 3 below. More specifically, the second type of BEAST
s demonstration involved developing a training set composed of random
)

' mixtures of salicylic, benzoic, isophthalic, and p-aminobenzoic
¢

acids. Fach of these four components was allowed to vary from O to
3:;3 25% (by weight) in each sample. The remainder was made up of the
§§ aluminum-oxide diluent. A random-mixing algorithm (the same one used
g to generate the theoretical training set of Figures 4, 5§, and 7) was
% used to generate the amounts to be used for each component in each
E% sample. The purpose of this test was to develop a large training-set
T spectral cluster that contained variations from a number of sources,
é and then to determine whether pure samples could still be correctly
g identified as being different (or false) using only the training-set
tg spectral data. The results for a few compounds from the laboratory
{% shelf appear in Table II.
3.

The 40-sample training set from test 2 was used again, this time in
conjunction with the 20 mixture samples that were held out of the
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[ training set created in test 2. Ten of these 20 samples were
"contaminated" with a false-sample compound to determine whether
these samples would be flagged. The other ten were unaltered and
served as validation samples.

The benzoic-acid derivatives used in test 1 and in the training set

for tests 2 and 3 were analytical reagent-grade salicylic acid, p-

aminobenzoic acid, isophthalic acid, and benzoic acid. Rcagrnt-grade

aluminum oxide was used as a diluent in mixtures where a range of
component concentrations was desired (tests 2 and 3). Before each sample

(or sample mixture) was read in the InfraAlyzer 400 spectrophotometer,

the sample was ground and mixed in a Spex mixer/mill. The powder was

then sifted through a 100-mesh sieve and packed into the closed sample
cup provided with the InfraAlyzer. Three readings were taken on each
sample, each successive reading after a 120-degree rotation of the closed

cup.

RESULTS AND DISCUSSION

Results of Studies Using Benzoic-Acid Derivatives as Samples. The
ability of the BEAST to differentiate among four rather similar benzoic-
acid derivatives (test 1) is suggested by the data in Table I. The
distances tabulated have units of asymmetric nonparametric central 68%
confidence intervals (equivalent to one standard deviation if the
underlying distribution were Gaussian). These intervals were calculated
from the distance (Fuclidean metric) between the 0.16 and 0.84 quantiles
of  the bootstrap distribution,  following  the projection of this
distribution onto the hyperline connecting the center of the bootstrap
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distribution and the new-sample spectral point. These compound-spectra
form four clusters in hyperspace whose intercluster distances (expressed
in "standard deviations®) appear in Table I. The compound heading each

column was designated as the training set, so that the distaace from a

-

s

column-heading compound to a row-heading compound is given in terms of

-
P

oo

nonparametric standard deviations (SDs) of the column-heading compound.
For example, the distance between the clusters representing benzoic acid
and salicylic acid can be expressed in two ways: in terms of the standard
deviation of bensoic acid in the direction of salicylic acid (39 SDs), or

in terms of the standard deviation of salicylic acid in the direction of

- P
o . MR T

benzoic acid (137 SDs). The difference in SDs, of course, reflects the

T

difference in the variances (sizes) of the benzoic and salicylic acid

clusters in the direction of each other.

- -
-

T

In fact, benzoic acid exhibited the largest overall variance of any

B

>
s

of the compounds tested, because of the difficulty of grinding benzoic

—
ox]

acid, which forms long, thin crystals. Such crystals can slip through a

"~

100-mesh sieve and thereby introduce an additional source of variation
into the benzoic acid data cluster. The variation in the other compounds

can be attributed primarily to orientation effects caused by packing

Tr e » B OCE I

peculiarities, because this was the only factor that was varied between
replicate measurements of these substances. Aluminum oxide (included in

this test because it was used as the diluent in tests 2 and 3) had the

smallest overall variance, not surprising since it was the only reagent

that was available in a powder fine enough to pass through the 100-mesh

sieve.

Other distances in Table I are also in accordance with what might be
predicted: aluminum oxide and isophthalic acid are 4208 SDs apart,
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- .'::
because chemically they have little in common. In fact, aluminum oxide ::",E:
is the most distinct from all of the other compounds. Benzoic acid and ."::,':
salicylic acid form the closest spectral clusters, since they differ by ‘
only a single oxygen atom. For all these pure components, only a small :'::::
number of bootstrap replications are required (B=50) because the variance :::.E
is relatively small and the distance between adjacent clusters (measured ‘.i
in 18-dimensional space) is relatively large. This clear disparity :i:::
allows the samples to be distinguished computationally in a fraction of a 3{{:
second. Considering the distances (in terms of SDs) involved, there is oy
little danger of any of these pure compounds being incorrectly identified EE’:E
by the BEAST. %E:

Bensoic~Acid Derivative MNixtures. A large number of sample
components, varying over a relatively broad range of concentrations, can E::.:
have the effect of "filling® the spectral hyperspace provided by only a :;2'
few analytical wa.velengths. This phenomenon is demonstrated by the '
3-wavelength training set used in obtaining Table II. The Euclidean é:?
distances for the data in Tables I and II were quite similar (all within f‘::?
an order of magnitude or so of each other); however, the distance in z;
terms of standard-deviation units is far more disparate between the two 'i:':
tables. The reason that the distances in SDs shrink so much from Table I ':;:
to Table IT is that the cluster size in Table II has increased by about a 'f;
factor of 100. This spread causes some apparently unrelated compounds, 5‘:‘:}
like sucrose and whole wheat flour, to appear to be similar to the %E':
training set of benzoic acid derivatives. This increase in training-set '?.i'
cluster sigse also highlights the need to to be aware of the exact shape EEEE
of the training-set cluster when small distances are classified as :::

f
representing valid or false samples. Finally, mixing a number of e
-19- e
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different components results in diluting the contribution of each one to
the total sample spectrum, in effect compressing the available analytical
space further and increasing the probability of mixture-clusters

overlapping. (This behavior can be seen in Figures 3 and 4 as well as 6

and 7.)

Contaminated Bensoic-Acid Derivative Mixtures. The third test of the
BEAST investigated this worst-case mixture-overlap situation by employing
the same training set described in test 2 above to train the BEAST
algorithm. The algorithm was then presented with the remaining 20 sample

mixtures. Ten of these 20 mixtures were "contaminated® with

;cetylsalicylic acid (randomly varying over a range from 1 to 20%). The
results appear in Table III. Even in this worst-case example it is
apparent that the contaminated samples are 1likely to be detected as
false. Three out of ten of these contaminated samples fail the 3 SD test
for being false. None of the uncontaminated samples was incorrectly
identified.

One might wonder why the response (in terms of SDs) for very similar
contaminant concentrations varies so widely among contaminants in Table
IITI and why contaminant concentration does not appear to correlate well
to distance. The answer seems to be in what the other four component
concentrations are. When components similar to acetylsalicylic acid rise
in concentration, a 1% contribution to the final spectrum from
acetylsalicylic acid becomes relatively smaller and the sample spectral
point appears to move closer to the training set. Table IV shows the
distance response of the BEAST for two groups of similar acetylsalicylic-
acid contaminant concentrations. The concentration of the diluent
(aluminum oxide) is inversely related to the concentrations of the
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bengoic acid derivatives, so lower diluent concentrations indicate an
increase in the concentrations of the other (non-contaminant) compounds.
This relative increase in the concentrations of the noncontaminant
compounds, in turn, correlates to a decrease in the distance of the
sample from the training set.

Results of Theoretical Studies Uring Synthetic Samples. A number of
parameters affect the performance of the BEAST in experimental
situations, including the number of wavelengths used in the analysis, the
training-set size, the selected radius of the hypercylinder, and the
number of bootstrap replications of the training set that are employed.
To investigate the effects of each of these variables, a theoretical
calculation was undertaken usirg hypothetical multivariate samples,
randomly drawn from a multivariate normal population with a known group
mean (center) and a known variance in all directions. A number of these
synthetic samples (selected by Monte-Carlo integration of the
multivariate normal population) formed a training set that was then
analyzed by the BEAST, whose task it was to indicate the variance of the
training set in a selected direction. The bias and mean-square error
(MSE) of the BEAST as a point estimator of the variance could then be
determined for a particular combination of parameters. Ten runs were
made with each combination of parameters (1, 2, 3 and 5 wavelengths,
training set sizes from 10 to 200 samples, hypercylinder radii from 0.001
to 0.1, and 50, 200, 1000, and 10000 bootstrap replications). The
results are summarigzed in a series of figures that describe the bias and
error of the BEAST estimator as a function of each of the four
parameters. The figures serve as a brief guide to using the BEAST by
providing estimates of the error that can be expected for typical
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combinations of training-set size, number of replications, number of
wavelengths, and hypercylinder radius.

The most influential factor affecting the bias, or accuracy, of the
BEAST appears to be the size of the training set. Figure 13 depicts the
percentage bias (given by the absolute value of 100(E(t)-K)/K, where K is
the known value used to generate the hypothetical samples and E(t) is the
estimate of the true value given by the BEAST) of the BEAST as a function
of the training-set size for a typical run (d=2 wavelengths, B=1000
bootstrap replications). The bias is quite large (28.5%) when only 10
training samples are used, but it drops steadily to under 1% when the
training set size reaches 200 samples. This suggests that to be prudent
one must use as many training samples as possible, a result that is not
startling in light of the requirements of other near-IR methods2?©. A
particularly poor training set (e.g., a small number of samples tightly
clustered in a small region in spectral hyperspace) can cause the bias to
jump to over 106% (as occurred in a run where d=2 wavelengths, B=10000
replications, and n=10 training samples). Potential users of the BEAST
are therefore cautioned to make certain that their training samples are
well-distributed, and not assume that they are well-distributed simply
because they were randomly selected. Histograms!3, sample-selection
algorithms3!l, and quantile-quantile plotsl3 all provide ways for users to
ensure the adequacy of a particular training-set distribution

Figure 13 also shows the relationship between the mean-square error

(MSE) and the training-set size. The MSE has been converted to relative

standard deviation (RSD) and expressed as a percentage. Overall the RSD
clearly decreases (improves) as the training-set size increases (the
slight increase in RSD at n=200 samples is probably an artifact of the
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particular sauple set that was randomly selected). The training-set size

does not influence the RSD to the same degree as does the number of
bootstrap replications of the training set (shown in Figure 14).

The number of bootstrap replications of the training set is the most
influential factor in determining the RSD of the BEAST. Figure 14 gives
the RSD as a function of the number of bootstrap replications for sampled
spectra consisting of 1, 3, and 5 wavelengths. Two things should be
noted from these plots: first, that the RSD drops rapidly as more
bootstrap replications are performed, and second, that using more
wavelengths in the analysis demands the use of more replications to
achieve a given RSD. This behavior is not surprising. The BEAST uses
the bootstrap-replicate distribution to approximate the real-sample
distribution. Therefore, more replicates are required as more
wavelengths are used because the size of the analytical space that must
be described by these replicates increases. The number of replicates
must be large enough to assure an adequate number of points in the
hypercylinder as well (though as few as 50 points in the hypercylinder
are often sufficient). O0f course, to a certain extent, the number of
points in the hypercylinder can be increased by increasing the radius of
the hypercylinder. Eventually, however, this approach results in a loss
of directional selectivity that begins to bias the quantiles of the data
in the hypercylinder. Figure 15 depicts the percentage bias of the BEAST
as a function of the number of bootstrap replications of the training
set. The accuracy is not as strongly affected as is the RSD by a small
number of replications.

The effect of the hypercylinder radius on the RSD and bias is shown
in Figure 16. The relatively high RSD values in the figure are the
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result of using only 50 bootstrap replications to describe the synthetic
data in a five-dimensional space. As mentioned above, the number of
points in the hypercylinder can be controlled by changing the radius of
the hypercylinder. Many rules for setting this radius could be proposed,
such as setting the radius by a function of the average nearest-neighbor
distance, or by a function of the distance of the smallest dimension in
the cluster. In practice, the best results were most easily obtained by
keeping the radius of the hypercylinder two to three orders of magnitude
smaller than its length. In our experience this approach provides an
adequate number of points inside the hypercylinder and preserves
sufficient directional selectivity.

Figure 17 shows the effect of the number of wavelengths on the RSD
and bias. When the hypercylinder radius is controlled (as was done in
this figure) the bias and RSD will vary only slightly and will remain at
low levels. One would expect both lines to curve upward at a larger
number of wavelengths (if additional replicates are not used). Of
course, if the number of replications and the hypercylinder radius are
not controlled, fewer and fewer points fall inside the hypercylinder as
the number of wavelengths increases. In this event, the results of the
BEAST begin to deteriorate rapidly. The effect of the hypercylinder
radius is particularly sensitive to the number of wavelengths that is
used (the radius had to be increased from 0.001 for the three-wavelength
test runs to 0.005 for the five-wavelength test runs to get any points

inside the hypercylinder at all).
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CONCLUSIONS

Conventional near-infrared reflectance analysis correlates changes in
sapple spectra to changes in sample composition. In this sense, the
near-IR analysis algorithm is essentially a pattern-recognition technique
that produces a linear equation relating a particular component
concentration to reflectances observed at several near-infrared
wavelengths. Like most pattern-recognition methods, the near-IR
reflectance analysis algorithm is accurate only as long as the samples
presented to it are what it "expects to see." When a new sample falls
outside of the domain of the sample set used to train the near-IR
reflectance analysis algorithm, the near-IR prediction equation does not
apply to the new sample. The Quantile BEAST provides a way to adequately
detect this false-sample situation. The new sample can then be rejected
or the algorithm can be retrained with samples known to be similar to the
new (false) one.

In general, the shape and orientation of experimentally obtained
multidimensional near-IR spectral data are not completely predictable?.
This fact is suggested by both the synthetic data in Figure 7 and by the
experimental data in Figure 18. Although this unpredictability is
usually not a problem when the simple identification of pure compounds
(or mixtures of low variability) is attempted, it can become a problem
when:

1. the allowable variability of the mixtures increases (e.g., from drift
over time, changing component concentrations, or variations in
particle size or sample packing), or
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2. mixture samples are contaminated by a foreign component not present
in the training set.

A nonparametric clustering method, the Quantile BEAST, functions
without assumptions about the shape, size, orientation, or symmetry of
the data. Deviations from assumptions cannot be reflected in the
method’s results. Like many other nonparametric methods, the BEAST is
based on a very simple procedure (the drawing of a bootstrap sample)
iterated a large number of times to produce a whole result (the sample
classification) that is seems almost greater than the sum of the method’s
parts. One of the strengths of the BEAST is its ability to produce an
understandable result in an understandable way.

The false-sample problem is an important one with many facets, and
lives can literally depend on getting a correct answer. False samples

might be over-the-counter drug capsules filled with poison, and placed in

a batch of the unadulterated drug capsules. False samples might be decoy

missile warheads dispersed among real warheads, traveling in space en
route to their targets. The BEAST is potentially applicable to both
situations, and to more. However, the BEAST is not limited merely to use
in solving the false-sample problem. It is easy to envision using the
BEAST to select training-set samples as well. In many near-IR
reflectance analysis applications it is desirable to include a relatively
large number of "extreme" samples in the training set in order to obtain
a prediction equation with a uniform error over its entire range. The
BEAST can take a large number of potential training samples in wavelength
space and create an estimate of the true training set using bootstrap-
probability space. A uniform sampling of the potential training samples
in wavelength space (using each sample’s probability of belonging to the
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) training set, obtained from the bootstrap space) will then produce a
.

3 representative training set from the spectra without the need for tedious
o

chemical analysis of each potential training-set sample.

X A weakness of the BEAST that does not hinder parametric methods is
iy

i the requirement that a bootstrap-replicate distribution be calculated.
The largest distribution used in this research (10000 replications) took
T 2 minutes and 21 seconds of CPU time to create. If this distribution had

to be computed using a single CPU for each sample to be analyzed, the

4FAST would be impractical in many applications. In practice, however,

X just as a training set is assembled only once, its replicate distribution
U

" need only be created once as well. The important requirement then
L}

becomes one of computer memory space and not of time. For many analyses

. the microcomputers currently available with 256K memory may be adequate. t
f% The BEAST algorithm is naturally suited to implementation in a

|

> parallel-processing environment becaus~- its bootstrap samples are drawn

iy randomly, independently, and with replacement from the near-IR spectral ¢
;v trairing set. Basically, the BEAST reaches its solution n times faster L
;' when n processors are employed. This parallel-processing mode was used ;
a to produce the bias and RSD data for the BEAST that appears in Figures E
ii 13-17. The deceptively simple plots disguise the fact that five VAX {
il 11/780 computers were used in parallel to create and analyze over 80000

i‘ multicomponent synthetic samples with various combinations of training-

% set sige, hypercylinder radius, and number of waveleng*hs and bootstrap t
g replications used. After the algorithm was recoded into parallel form |
5. the bias and RSD results were obtained in a single afternoon. As E
g' parallel processing becomes wmore common and hardware becomes readily

9
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available, the BEAST will become an even more attractive option in an

ever-increasing number of real-time analytical problems.
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TABLE I. Using the BRAST for Qualitative Analysis o
fet
Differentiating Among Four Bensoic-Acid Derivatives Ak

and a Diluent (distances in BEAST SDs®)

Isoh2pP Benzoc Alz0;4  Salcyle PABA?
Isoh2p 0 188 4208 838 1072 R
Benzo 1254 0 2889 137 483 Gt
Al30, 3930 405 0 1488 3041 w
Salcyl 1187 39 2991 0 449 : '
PABA 1052 72 3198 234 0 o

aThe distance between any two compound-cluster combinations is given in )

terms of the column-heading compound in the direction of the row-heading e

compound. B
bisophthalic acid o
cbenzoic acid v
daluminum oxide (the diluent in later tables) 50
esalicylic acid !i
fp-aminobenzoic acid oy
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TABLBR II. Distances (in BEAST SDs) of Four Pure Ground (100 mesh) e

Compounds from a Training Set® of Mixtures of Compounds o

Compound Distance o
acetylsalicylic acid 8.20 b
dextrose 46.33
whole wheat flour 12.71 o

sucrose 3.88

2Trainir~ set composed of mixtures of benzoic acid, isophthalic acid,
salicylic acid, p-aminobenzoic acid, and an aluminum oxide diluent.
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TABLE III. Distances (in BEAST SDs) of Real and False (contaminated)

Mixtures from the Mixture Training Set Used in Table II

Sample Real Samples® False Samplesb
No. (Validation Set) (Contaminated Set) Contaminant (%)

1. 1.28 6.59 1.1

2. .61 3.25 8.0
3. .76 5.05 3.8

4. .47 .55 14.8

[ -

5. 1.97 .66 4.2
6. 1.54 1.77 19.9

7. 1.65 6.53 1.7

8. 1.18 3.34 1.0
9. .79 3.88 10.7
10. 1.10 2.32 4.5

(Note: the cluster surface is customarily defined as being three standard

deviations from the center of the cluster.)

a"Real® mixtures contain benzoic acid, isophthalic acid, salicylic acid,
p-aminobengoic acid, and aluminum oxide. In essence, the real samples
form a validation set because they contain the same compounds as the
training set samples.

b*False" mixtures contain the same components as real mixtures, except
that acetylsalicylic acid is also added.
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TABLE IV. Distance Response of the BRAST (in standard deviations) for ﬁ;
Two Groups of Similar Contaminant Concentrations in the False 4

Samples from Table III [

Sample Acetylsalicylic s

No. Distance (SDs) Diluent (%) Acid (%)

1. 6.59 67 1.1 |
7. 6.53 64 1.7 b

8- 3.34 50 1.0 W

3. 5.05 57 3.8 N

5. 2.66 41 4.2 vy
A

10. 2.32 44 4.5 -

v
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Figure Captions Q
;
N
Figure 1. - Two thousand spectra, taken at two wavelengths, of two Q
. i
hypothetical compounds, A and B. These spectra are represented as points !
\4
in a two-dimensional space. A line can be formed between the centers of ﬁ;
these two clusters. The box in this figure marks off a region that g.
hﬂ
includes all points within a certain distance (radius) of this center 0
¢
i
line. t}
b
o
3t
Figure 2. A quantile-quantile (QQ) plot of the spectral data points &
N
N
within the radius of the center line shown in Figure 1. The best-fit W

straight lines through the two groups of points are shown. The slopes of

07,

&t

hot

these lines are the same because the two clusters (A and B) have the same 5&
)

R

variance in the direction of one another. The inset is a histogram ﬁz
&
(empirical distribution function) of the points inside the "cylinder” g?
o

formed about the center line in Figure 1, i.e., the points that generated b
i

the §Q plot. The horizontal axis of the histogram covers the same range ‘f
as the full horizontal axis of the Q@ plot. l!
Figure 3. Two-wavelength spectra of three pure hypothetical compounds, i;
A, B, and C. The spectra are free of error from all sources. ?!
R

a4

. Q:l .

A

Figure 4. Hypothetical spectra of 1000 training samples, composed of 'S:
mixtures with randomly selected proportions of A, B, and C, whose two- ii
~

?.( i

wavelength spectra are shown in Figure 3. @:
“é,

"
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Figure 5. Hypothetical spectra of 1000 new training samples. These
samples are made up from pure compounds like those in Figure 3; however,
in this figure A and C have been shifted in position (in other words,
they are new compounds with new spectra). The cluster is still

elliptical, although its size, center, and orientation have changed.

Figure 8. Two-wavelength spectra of three hypothetical compounds like
those in Figure 3. There are 1000 samples of each compound. Unlike in
Figure 3, however, error was permitted in the location of each compound,

giving the three basically elliptical clusters shown (B and C at the top

overlap).
Figure 7. Spectra of 1000 training samples, composed of the same
compounds used to generate Figure 5. This time error was permitted in

the locations (spectra) of the compounds A, B, and C (see Figure 6) and
the shape of the resulting training cluster is irregular. The cluster

corresponding to compound B was three times larger than those of A and C.

A
>

sty
st

4

Figure 8. The frequency distribution of the points inside a cylinder

T
e e e

o
A

containing the center of the cluster shown in Figure 7. The distribution

-
-
gy

>

is right-skewed.

Figure 9. The effect of skew on confidence-limit determinations.
Symmetric limits (about the mean) are clearly inadequate for this
distribution. The probability of an observation appearing at the (mean-

a) and the (mean+a) is not the same.
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Figure 10a. A hypothetical true population distribution F, containing

all possible training samples. §%

3
Figure 10b. Constructing an empirical distribution (the training set) éﬁ
from the possible training samples (the unknown distribution F) in Figure E?é
10a. -

W
Figure 1la. Drawing a "bootstrap set" from the training set. This set gg
has the same number of samples as the training set. The bootstrap-set ’t
samples are selected randomly and with replacement from the samples in ég
the training set. The bootstrap-set samples appear as vertical-lined i%ﬁ
bars. The training-set samples appear (to provide a position reference) :ﬂ

as crosshatch bars.

Figure 11b. The unknown distribution F is approximated by repeated
drawing of randomly selected bootstrap-sample sets, of the same size as

the training set, from the training set. In each bootstrap-sample set

some training-set values are selected once, some more than once, and some
are not selected at all. Again, the bootstrap-sample set appears as
vertical-lined bars, and for reference, the unchanged training set

appears as crosshatched bars.

Figure 11c. A third unique bootstrap-sample set (vertical-lined bars)

drawn from the same training-set samples (crosshatched bars) used in

Figures 11a and 11b. U
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iy Figure 12. The hypothetical distribution of parameters calculated for
M
;z each bootstrap-sample set generated during the Monte-Carlo process

depicted in Figures 11a, 11b, and llc.

! Figure 13. The percentage bias (solid line) and RSD (dotted line) of the

BEAST distance estimator as a function of the training-set size (N)

0 (B=1000 bootstrap replications, D=2 wavelengths (dimensions), R=0.001,
BU

$ the radius of the hypercylinder).

4

N

AL . . o ae

v Figure 14. The dependence of the relative standard deviation of the
s ¥

K

;$ BEAST estimator on the number of bootstrap replications (B) of the

training set. The solid line corresponds to a sample monitored at five

wavelengths, the dotted line to a sample monitored at three wavelengths,

0

:o::i and the dashed line to a sample monitored at only one wavelength (N=50
2 training samples, R=0.001, the radius of the hypercylinder).

;

fz Figure 15. The percentage bias of the BEAST estimator as a function of
R the number of bootstrap replications (B) of the training set (N=150
3; training samples, D=5 wavelengths (dimensions), R=0.005, the radius of
:3 the hypercylinder).

)

?- Figure 16. The relative standard deviation (dotted line) and bias (solid
_g line) of the BEAST estimator as a function of the radius (R) of the
g hypercylinder (B=50 bootstrap replications, N=100 training samples, D=5
f' wavelengths (dimensions)). The high RSD values observed are the result
% of using only 50 bootstrap replications.
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Figure 17. The relative standard deviation (dotted line) and bias (solid
line) of the BEAST estimator as a function of the number of wavelengths
(D) used to monitor the sample (B=10000 bootstrap replications, N=50
training samples). The hypercylinder radius was set at R=0.001 for two

and three wavelengths, and at R=0.005 for five wavelengths.

Figure 18. A cross-section of the benzoic acid derivatives training set
used in Tables II and III. This cross-section has been projected on a
wavelength axis, and is right-skewed.
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¥(T,B,X,C)

(x]
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LIST OF SYMBOLS

Special defined operations:

median of x (x is a set, vector, 1- or 2-D array)
roots of f(x) by trapezoidal interpolation

random number on 0<x<l, Monte Carlo integration of

continuous uniform distribution

creates bootstrap distribution B for training set

T, and finds the center C of the distribution
finds BEAST distance from center C of training set
T to new spectrum X using probability determined

with bootstrap distribution B

greatest integer function of scalar, set, vector,

or 1- or 2-D array
1/2 , x _-t%/2
1/(2r) J dt, area from -® to x.

inverse of above; i.e., given area, find x
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0(x) ordered elements of x (x is a set, vector, 1- or o

2-D array 0

= equals, or "is replaced by" when the same variable o

appears on both sides of =

I *such that" qualifier on a variable, e.g., s&%
{x10¢x<{1} specifies the range of possible values A

for x o

Ix| the absolute value of x (x is a scalar) N

Scalars: e
n training-set sige, i.e., numbér of samples
d number of wavelengths

n number of training-set replications comprising

bootstrap distribution (user determined)

o BEAST standard deviation (SD), average of upper )
and lower confidence limits producing a symmetric P

distance W)

o error-adjusted BEAST SD, asymmetric value produced
2.

v
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Th

np

S (02)

S (cor)

S cam)

Iy ¥

N [ Iy
IEOOCN SN RN

using only one confidence limit

hypercylinder radius (user-determined)

skew sensitivity (user-determined)

number of spectral points falling inside a hypercylinder
lower confidence-limit index (index is a position

in an ordered array that expresses the value of an
integral from the end of the array to the index)

upper confidence-limit index

contour level specified by ¢(-0), used to

determine if test spectrum is inside or outside a
cluster

¢-1(a)

Euclidean distance from bootstrap-distribution

center C to new spectral point X

Euclidean distance from training-set center C(r,

to bootstrap-distribution center C

Euclidean distance from training-set center C(y,
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S (cum)

S(cr)

S(cp)
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to the new spectral point X

1/2 the total length of the sides of a triangle

specifying a particular plane in hyperspace

area of a triangle whose vertices specify a

particular plane in hyperspace

Euclidean distance from training-set center C(r,

to hyperline connecting C to X

Euclidean distance S gopy projected on the

hyperline connecting C to X

index for error adjustment in 34

¢-1(z,/np)

Matrices, vectors, and arrays:

B = (bsj)m,da

Q
|

= (ej)a

e -}
1}

(Pij)m,n

GRS AN IO

m by d bootstrap distribution

center of the bootstrap distribution B

training-set sample numbers selected for

bootstrap-sample sets used to calculate the
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bootstrap distribution

By = (b(a)ij)n,d bootstrap sample set used to calculate single
rows of B
T= (t4)n,d training-set sample spectra

4
[

(x3)a test-sample spectrum
Scor) = (S(or)i)m Euclidean distances from each element of B to C
. 8¢ary = (Sanys)m Euclidean distances from each element of B to X
Swey = Swyyi)a 1/2 total length of triangle sides formed by
planes in hyperspace connecting X, C, and the rows

of B

A= (a3), areas of triangles formed by planes in hyperspace

connecting X, C, and the rows of B

3y = (S@ryi)m radial EBuclidean distances from the rows of the
bootstrap distribution B to the hyperline

connecting X to C

S = (3¢p)i)m Euclidean distances from C to the rows of B

projected on the hyperline connecting C to X
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S¢o = (8¢)nn
Ciry = (c(mj)d
F=(f3)nn

Iy = Gapidan
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ordered ny elements of {s(p)ilTh<s(r)i}
center of training set T by M(t;;)
n;, elements of 8.,y corrected using C(r,

n;, independent variables of the set {1, 2, 3, ...}

paired with F to locate the root of F
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APPENDIX 1. b '
J
The Quantile BEAST |
)
o
.
.ﬁﬁ
e'.‘
o
The Quantile BEAST is basically an experimental clustering technique ,
for exploring multivariate data distributions. A number of different ;E,_ '
variations in the details of the implementation still produce a method . '-
]
that is consistent with the description presented thus far. As is the ®
R
case with many problems, there is more than one route to the same ::
!'gs.
DO
solution. One path to determining the BEAST distance is presented here. ;:::
$.¢
.!\"
In near-infrared spectral data analysis, virtually all )
N
implementations of the BEAST begin with the collection of a training set :::t
BSOU
(%
of samples. The training set consists of spectral data values (e.g., ::;‘.:
.t
‘li,
absorbance, log(1/R), etc.) recorded at d wavelengths for n training -
7 il
samples. The resulting data are represented by a two-dimensional n-by-d ':"::
."""‘
matrix (or array) T. :::;‘
o
"t
The BEAST itself is composed of two operations:
fitgt
1. The bootstrap distribution is created from the training set by an ,.:%;
["I
operation x(T). This bootstrap distribution forms the basis for :::‘:':
.‘.‘__
calculating directional probabilities, and is calculated only once
.“,
for each training set. £(T) provides the bootstrap distribution B :;;
4
for the training set as well as the center C (groupmean) of the :“‘:
ly‘
bootstrap distribution. 2
Wil
2. The operation y(T,B,X,C) calculates ¢ and o, (the BEAST standard .:::é
'i“’-
deviation, or SD) using the training set T, the bootstrap :‘:{
I‘]z
distribution B and center C (from step 1 above), and the test 'i
oo
- X
‘i‘q"
la“v‘
R
N0
&
""'.

%
P oy o TRl G s R R Y DRI PN
: , y : X 0 : ) Rt o,
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%
sample’s spectrum X. The Euclidean distance from C to X is scaled by P,
i
4yt
0 or 0. to give the distance to X in BEAST SDs. :E:
]
'l
Once the training set has been assembled x£(T) can be calculated. :::
(N
Random selections are made from T by filling P with the training-set .&.:.‘
sample numbers to be used in the bootstrap sample sets B(eys v
L
P=ps;=r (1) ::.S
O
and then the values in P are scaled to the training-set size n: ::
R
P=[(n-1)P + 1]. (2) )
‘t
A bootstrap sample B(g) is then created for each row i of B by .f.
iy
B(.) = t‘kj (3) :E}
where k are the elements of the ith rows of P. The ith row of B is ]
actually filled by the center (groupmean) of the bootstrap sample :
M3
.,t

n 2
- {
b5 k()1 5/ @ 3

and the center of the bootstrap distribution is ¥

m
¢; =;L;b;;/ (5) b

At this point £(T) is complete for the training set, and the analysis of

actual test samples can begin. :\!
The calculation of the BEAST distance using 9(T,B,X,C) now requires .::f’
only a test spectrum X obtained from a sample of interest by scanning the g
sample at d wavelengths. This calculation involves finding the hyperline ;:::,
connecting € and X, and determining the probability of X belonging to T .:3
based upon the number of points (rows of B) within a certain distance Th '
0

;

thy
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of the hyperline (in effect, taking the points or rows of B that fall
within a hypercylinder of radius ry). This implementation of the BEAST
proceeds toward the point-density of the hypercylinder by forming planes
connecting X, C, and the rows of B. The use of a series of planes allows
a complex structure like a hypercylinder in d-dimensional hyperspace to
be represented in a simple manner regardless of the number of spatial
dimensions (in fact, the number of planes is completely independent of
the spatial dimension).

The three points that specify a plane in space also specify a

triangle whose sides are readily determined:

d
S0z)= GiE (5 c? )2 (8)
_ g b 2 ,1/2
S(OR)i_ (j=1( ij” CJ) ) (7)
d 2 ,1/2
s(2R)i= (jél(bij- xJ) ) (8)

Once this series of triangles has been formed, finding the rows of B that

fall inside the hypercylinder is a straightforward procedure.
swB)i= G(oz)* S(or)i* S(2r)i) / 2 (9)

1/2
2= (8upyi (5 uByi~ S(02)) 5 (uB)i™ ®(or)s) (5 (uB)i~ ®(2r)i)) /2 (0
S(R): " 2(ai) / S(O2) (11)
2 1/2

2
*wi” Coni T tms (12

-g-
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The elements of 8, are Euclidean distances, from the center C to each
point in the bootstrap distribution B, projected on the hyperline
connecting C to the new sample spectrum X. 1In this implementation of
¢(T,B,X,C), constructing a hypothetical plane through C such that the
hyperline from X to C is normal to the plane allows these S, distances
to be given a direction along the hyperline. Points in the bootstrap
distribution that are on the same side of the plane as X are assigned
positive distances in 8¢py- The remainder of the elements of 8,y have
negative values. This directional assignment can be accomplished by
multiplying the elements of s(py; for which {S(02y2 + s(oryi? < S(ar)i?}
by -1. At this point the values of 8., representing points in B that

are outside of the hypercylinder are discarded for the remainder of the

calculations:

S~ Wil 3@mys¢ ™) (13)

and n; becomes the number of elements in 8., .

EE XAt

For a symmetric 1 SD contour on T, 1 = [0.16n,] and u = [0.84n,], making
the confidence interval along the hyperline connecting X and C
{s(q91<C<s¢q),}- Note that if n, is less than about 50, the interval

will not be very precise at all. The uncorrected o0 can be found by

either

I
R e e Gl % % % % e T
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or by calculating the standard deviation of 8.,y and multiplying it by g;
nl/2. Once o is known the distance to the test spectrum in uncorrected 3
b

BEAST SDs (suitable for unskewed training sets) is simply i

d 2 \1/2 .
)
. = X, g 15
(Ey(e5- x? )2 (15) .
0]
0f course, many training sets are skewed and 1 and u should be ;ﬁ
gy
Y,
adjusted to compensate for the skew before finding s(qy; and s(qy,- At &

the start of this adjustment one must be aware of the number of replicate
points available in B in order to select an adequate contour level for
the training set T. For m € 1000 this contour should probably be one, so
=8(-1). Setting zy=¢-1(a) and locating the center of T by c(q);=M;(t;;)
sets the stage for the adjustment of the confidence limits to compensate
for skew.

C¢ry will tend to lie in space in the direction opposite to the
direction of the skew (with respect to C) because of the leverage effect
sf skewed points on the mean. This fact is the basis of the confidence-
limit adjustment, and the calculation of the magnitude of the adjustment
begins with a determination of the distance and direction of the

difference between C and C(py with respect to the hyperline connecting €

to X.

d
2.1/2
Sccomy = Glileym <50 (16)
s N x )2 )2 a7
“ezr) MMy
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Scumy™ Go2)* S(cor)* S(can)) / 2 (18) ]

A= (8

1/2 .
(cumy S (oum)~ S(02)) S (cu)~ S(cor) Soupy” S(ezmy)” (1 ]

S ery= 2(A.) / 8 ) (20)

2

2, 1/2
S(cpy= Scory ~ S(cr) ) /

(21) g

The directional sign given to S cpy is opposite that given to 8. If "
{8¢02)® *+ S(cor)? > S(cary} then 8 cpy is multiplied by -1. i

At some point it may be useful to compare the mean of 8.4y to the ,
median of S8¢a)- If the two are substantially different S ;) may be
skewed. The Central Limit Theorem applies to 8,y so the presence of o
skew probably indicates that n,, points are not enough to create a stable bd

confidence-limit adjustment. If skew is present two options are ot

available: (1) go back to &(T) and specify a larger m, or (2) increase ry ":::
and recalculate y(T,B,X,C) (note that this option may cause a loss of
directional selectivity that can bias the quantiles of 8.5, ). Finally, Y
it should be noted that S,y has been ordered at this point and therefore Ei:‘:
the use of some common ways of calculating M(8(,)) will result in very “
poor running times for the algorithms. To efficiently find M(S(y),
simply select the (n,/2+1/2)th element of 8,y where ny, is odd, and the l“‘
mean of the (n,/2)th and (ny,/2+1)th elements where n), is even.

In order to make S.cpy perform well as an adjustment in a O
computational environment where almost any axis scale or skew is “‘!“
possible, 8 cpy is replaced by Scp)6+M(S(g)).  The addition of M(S(y)) b

-12- o
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helps to assure that the correction S.cpy and and its array-analog z,
(defined below) have the same sign (direction) when 8., is slightly
skewed, and § provides a skew sensitivity adjustment. Typically 6 has a
value between 0 and 1 that is set empirically for each combination of T
and B to keep the absolute magnitude of the adjustment inside of the
actual values of 8.

The calculation of the z, adjustment from S cpy proceeds as follows:

fi = S(q)i— S(CP) (22)

Ig={1 2,3 ..., o} (23)

N
li

e = L RIF(Iny)) ] (24)

¢ s,/ ny) (25)

If 122,1 > lzgl then & should be decreased and the calculation resumed at

eq. 18. Otherwise, new 1 and u values for 8(q are calculated:

et
]

[ #(25,+ 5,)n, ] (26)

e
il

( 0(2z°— z,)ny ] (27)

As in the case of the uncorrected BEAST SD o, the confidence interval
nlong the Jine connecting X and € is {s(4)1<C<s(q)u}- In this
inplementation of the BEAST, the upper confidence limit is always the one

-13-
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closest to the test spectrum X. Thus, 0. is simply s(y,, and the o
distance in adjusted BEAST SDs from the training set T to the test

spectrum X is

d o,
£ (e )2 )2 1 (o /15,120 (28) ®
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